Filling the (SR)GAP in Excitatory/Inhibitory Balance

نویسندگان

  • Jaichandar Subramanian
  • Elly Nedivi
چکیده

In this issue of Neuron, Fossati et al. (2016) report that through its domain structure, SRGAP2A, a Rho-GTPase-activating protein, can co-regulate excitatory and inhibitory synapse development, offering a putative evolutionary genetic mechanism for preserving excitatory/inhibitory balance during speciation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

NF-kappaB/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity.

Changes in synaptic plasticity required for memory formation are dynamically regulated through opposing excitatory and inhibitory neurotransmissions. To explore the potential contribution of NF-kappaB/Rel to these processes, we generated transgenic mice conditionally expressing a potent NF-kappaB/Rel inhibitor termed IkappaBalpha superrepressor (IkappaBalpha-SR). Using the prion promoter-enhanc...

متن کامل

SRGAP2 and Its Human-Specific Paralog Co-Regulate the Development of Excitatory and Inhibitory Synapses

The proper function of neural circuits requires spatially and temporally balanced development of excitatory and inhibitory synapses. However, the molecular mechanisms coordinating excitatory and inhibitory synaptogenesis remain unknown. Here we demonstrate that SRGAP2A and its human-specific paralog SRGAP2C co-regulate the development of excitatory and inhibitory synapses in cortical pyramidal ...

متن کامل

Plasticity of cortical excitatory-inhibitory balance.

Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes a...

متن کامل

Balancing Feed-Forward Excitation and Inhibition via Hebbian Inhibitory Synaptic Plasticity

It has been suggested that excitatory and inhibitory inputs to cortical cells are balanced, and that this balance is important for the highly irregular firing observed in the cortex. There are two hypotheses as to the origin of this balance. One assumes that it results from a stable solution of the recurrent neuronal dynamics. This model can account for a balance of steady state excitation and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2016